
Denoising photographs using dark frames optimized by quadratic programming

Manuel Gomez-Rodriguez
Electrical Engineering Department

Stanford University
manuelgr@stanford.edu

Jens Kober
Max Planck Institute

for Biological Cybernetics
kober@tuebingen.mpg.de

Bernhard Schölkopf
Max Planck Institute

for Biological Cybernetics
bs@tuebingen.mpg.de

Abstract

Photographs taken with long exposure or high ISO set-
ting may contain substantial amounts of noise, drasti-
cally reducing the Signal-To-Noise Ratio (SNR). This pa-
per presents a novel optimization approach for denoising.
It is based on a library of dark frames previously taken un-
der varying conditions of temperature, ISO setting and ex-
posure time, and a quality measure or prior for the class
of images to denoise. The method automatically computes
a synthetic dark frame that, when subtracted from an im-
age, optimizes the quality measure. For specific choices
of the quality measure, the denoising problem reduces to
a quadratic programming (QP) problem that can be solved
efficiently. We show experimentally that it is sufficient to
consider a limited subsample of pixels when evaluating the
quality measure in the optimization, in which case the com-
plexity of the procedure does not depend on the size of the
images but only on the number of dark frames.

We provide quantitative experimental results showing
that our method automatically computes dark frames that
are competitive with those taken under idealized conditions
(controlled temperature, ISO setting, exposure time, and av-
eraging of multiple exposures). We provide application ex-
amples in astronomical image denoising. The method is val-
idated on two CMOS SLRs.

1. Introduction

Among the sources of noise in images taken using a
CMOS digital camera we can distinguish photon shot noise,
reset noise, dark current noise, MOS device noise (mainly
thermal noise) and readout noise, and there are fixed pattern
noise (FPN) and temporal components (random) [4].

A bias frame is a raw image taken with closed shutter and
an exposure time of (almost) zero seconds. The bias value

Work down while Manuel Gomez-Rodriguez was with the Max
Planck Institute for Biological Cybernetics.

is usually caused by the readout noise. A dark frame is a
raw image taken with closed shutter and a nonzero expo-
sure time. Dark frames are a method by which the thermal
noise can be recorded. In a nutshell, each dark frame con-
tains a bias frame plus a component that increases with ex-
posure time, in a way that depends on several other factors,
including temperature and ISO setting.

A standard method for denoising long exposure images,
variants of which are implemented on many commercial
cameras [2], records a dark frame of matching exposure
time immediately after each long exposure. This dark frame
is subtracted from the so-called light frame (the image to be
denoised) to result in an image where a substantial part of
the noise cancels out. This procedure doubles the amount
of time that the imaging process takes, but it works reason-
ably well provided that the temperature of the sensor has
not changed. In practice, however, the temperature tends to
change during camera operation even if the outside temper-
ature is constant. The method effectively uses a one-point
sample from the joint distribution of the noise (jointly over
all pixels). As it is sampled from the joint distribution, it
does reflect pixel dependencies, but being a one point sam-
ple it can be a poor estimator if the intrinsic fluctuations of
the noise are substantial.

In fields where exposure times are long and low noise is
important (e.g., astrophotography), it is thus common prac-
tice to record a wholesetof dark frames taken under con-
ditions matching the ones of the light frame, and denoise
the image using the mean of those.1 This leads to better es-
timates of the expected noise and thus to better denoising
results, particularly with professional cooled CCDs, which
have precise temperature control.2

Alternatively, one can try to take into account statistical
aspects of the denoising problem in rather different ways.

1Instead of the mean, sometimes the median or a form of trimmedmean
or sigma clipping is used. We have found that this leads to only slightly
different results, without changing our conclusions in theexperimental part
of this paper.

2For temperature controlled CCDs, one can also get away with dark
frames whose exposure does not match, by separately removing the bias,
and scaling the de-biased dark frames.
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Many denoising methods assume that the sum of all the
sources of noise can be modeled as white Gaussian noise,
and work with demosaicked images (after interpolating the
Bayer array [5]). Wavelet methods [11], bilateral filter-
ing [13], anisotropic diffusion [14] or NL-means [1] per-
form particularly well in practice, preserving image bound-
aries while smoothing flat regions. They are thus very well
adapted to the statistics of natural images, however, they do
not take into account the joint statistics of the sensor noise.

Moreover, after the demosaicking process, the noise is
intensity dependent, as noted by [8]. The same reference
proposes a model for noise estimation and denoising, tak-
ing into account the demosaicking process and the camera
response function (CRF). However, the noise sources are
considered zero mean Gaussians, an assumption that pro-
hibits modeling dark current fixed pattern noise, one of the
main sources of noise in long exposure images. In the field
of astronomical images, [10] proposes a Bayesian frame-
work that includes dark current fixed pattern noise.

In the present paper, we develop a new method to denoise
long exposure raw photographs. It uses a library of dark
frames to obtain information about the joint distribution of
the noise for a given camera. This distribution depends on
various conditions, including temperature, ISO settings and
exposure time. If we knew the conditions for the image to
be denoised, we should ideally use a library that matches
the conditions of the image as closely as possible. How-
ever, it will turn out that our method can generalize across
varying conditions, e.g., by denoising images whose expo-
sure time or temperature does not match the one in the dark
frames. This is convenient not only if the exact tempera-
ture is unknown, but also if our space to store dark frames
is limited.

Given a set of dark frames taken under different condi-
tions of temperature, ISO settings and exposure time, and
a quality measure or prior for the class of images to de-
noise, our method computes a convex combination of dark
frames such that subtracting it from the given image opti-
mizes the quality measure. Empirically, we find that the
quality measure need only be evaluated on a relatively small
set of pixels (whose size is set independently of the image
size), which are chosen a priori to correspond to locations
where the noise has large variance (i.e., where the different
dark frames in the library will perform differently well).

The paper is organized as follows. Section2 is devoted
to the formulation of the convex optimization problem. In
section3, a criterion to select the pixels used in our opti-
mization problem is explained. Results and performance
analysis, with an application to photography, are shown in
section4, and the paper finishes with some conclusions in
section5.

2. Problem formulation

Removing the noise from a long exposure image
smoothes the original noisy (grainy) image. We set our
quality measure for our class of images to denoise to be the
smoothness of the image. A good measure of smoothness
is the discrete derivative; smooth regions have small deriva-
tives. Our aim is to find an elements of the convex hull of
the dark framesD(1) . . . D(N),

C = {D̂ ∈ R
m×n : D̂ =

N
∑

i=1

αiD
(i), α � 0, 1

T α = 1},

(1)
that — when subtracted from the given image — minimizes
a convex cost function over our measure of smoothness,
where we use� between vectors to mean componentwise
inequality. Note that the constraint1

T α = 1 ensures that
the bias noise (which is present in all dark frames) is re-
moved.

Then, a mathematical formulation of our problem is to

minimize
∑

xi∈S

∑

xj∈Lxi

φ
(

Îxi
− Îxj

)

subject to α � 0
1

T α = 1,

(2)

whereIz ∈ R is the intensity level of the raw image at
locationz, D

(k)
z ∈ R is the intensity level of the raw dark

framek at locationz,

Îz = Iz −
∑

k

αkD(k)
z (3)

is the denoised intensity,α ∈ R
N is the variable,φ is a real

convex cost function,S ⊂ N is a set ofevaluationpoints of
I andLz ⊂ N is the8-neighbor set of the locationz in the
raw image. For a raw image recorded with a Bayer array,8-
neighbor set means the8 closest points with the same type
of filter (R, G or B).

If a quadratic penalty function,φ(x) = x2, is chosen, (2)
is equivalent to the following quadratic programming (QP)
problem, reminiscent of a support vector machine [12]:3

minimize 1
2αT Hα + αT f

subject to α � 0
1

T α = 1,

(4)

3Note that the size of the QP is determined by the number of dark
frames. Using a few hundred or thousand dark frames would constitute
a relatively small QP that can be solved fast [9]; in machine learning, sim-
ilar problems whose size is of the order of millions are solved routinely
using methods exploiting the structure (e.g., sparsity) ofthe QP.



where

H =
∑

xi∈S

∑

xj∈Lxi

(

Dxi
− Dxj

) (

Dxi
− Dxj

)T

f =
∑

xi∈S

∑

xj∈Lxi

(

Ixi
− Ixj

) (

Dxi
− Dxj

)

Dz = [D(1)
z D(2)

z . . . D(N)
z ]T .

H is positive semidefinite and thus (4) is bounded from be-
low.

Among all the available dark frames, only the ones that
were taken under similar conditions as the noisy image
should be used for denoising. We thus expect that a solution
that generalizes well to the full image is sparse. Adding a
L1-regularization to the objective function to enforce spar-
sity would not change the value of the optimalα because
‖α‖1 is constant due to the constraintsα � 0 and1T α = 1.

As it turns out, our method also allows to estimate in an
indirect way the exposure time, temperature and ISO of a
photograph based on the selected dark frames, as the coef-
ficientsαi of those darks frames that have matching param-
eters tend to be nonzero in the experiments.

3. Evaluation points

As evaluation points, we use points that have high vari-
ance between dark images (high level noise). Although
points that have noise with low variance between dark
frames (e.g. points of high readout noise) are thus not used
in the optimization problem, they are still denoised: al-
though the quality function is only evaluated at a small set
of points, our effective dark frame

∑

i
αiD

(i) is subtracted
from the whole image. We are denoising using a convex
combination of samples from the full joint distribution of
the noise, with expansion coefficients chosen based on a
small set of pixels.

The selection of evaluation points has to be done only
once for a specific camera (in principle, it could also depend
on exposure time and ISO setting, although we have not
found a strong dependence). Furthermore,H in (4) has to
be computed only once.

In case of having a large amount of high resolution dark
frames and noisy images, memory requirements may limit
the scalability of our scheme if we load all the noisy images
and dark frames in memory. For our cameras,200 high
resolution dark frames in raw format require∼ 4 Gb of
memory. It is thus reasonable to load only the evaluation
points and their neighbors because they are the only values
of the dark images used in the optimization problem. In this
way, for200 dark frames and1000 evaluation points,∼ 400
Kb of main memory are required. After the optimization
problem is solved, we only need to load a few dark frames
to denoise the original image because the solution is usually
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Figure 1: 100 points with high variance between dark
frames were selected; each curve shows the intensity value
of one point for25 subsequent exposures (ISO1000 and
16 seconds exposure time), with breaks of ten seconds in
between exposures. One can see that noise increases with
the index of the exposure, due to an increase in the sensor
temperature.

sparse. Moreover, subtraction of the individual dark frames
occurring in the expansion of our synthetic dark frame can
be done sequentially if memory is scarce.

4. Results and evaluation

An ISO 12233 test chart [7] is used for a quantitative
analysis of the performance. Our method is compared to
single dark frame denoising as well as to denoising using
an average of dark frames (with the same exposure time and
ISO setting as the noisy image). All photos for the quanti-
tative analysis were taken with a Canon EOS 1Ds.

As common in machine learning, we use the same eval-
uation metric in the training setS (i.e. the optimization
problem) and the test setT to numerically evaluate the per-
formance of our method,

E =
1

8|T |

∑

xi∈T

∑

xj∈Lxi

(

Îxi
− Îxj

)2

, (5)

whereT is a random set of size|T | = 106, disjoint from the
set of evaluation pointsS. We normalize the value ofE for
the denoised image by the value ofE for the noisy image.

A set of dark frames with an ISO of800, 1000 and1250
and exposure times from1 to 128 seconds in powers of2
and21 seconds for different temperature conditions are used
for the analysis. The dark frames were taken in two ways:

• Constant temperature:Given an exposure time, a set
of 3 dark frames was taken, letting the camera cool
down for 10 minutes between dark frames, ensuring
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(a) Error (denoised image gradients relative to noisy imagegradients)
with respect to|S|. Our algorithm outperforms the single matching
dark frame solution; for larger numbers of evaluation points, we per-
form as well as the mean of matching dark frames.

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of evaluation points

R
el

at
iv

e 
co

nt
rib

ut
io

n 
of

 d
ar

k 
fr

am
es

 

 

1 second
2 seconds
4 seconds
8 seconds
16 seconds
32 seconds

(b) Contribution of dark frames depending on the number of evalua-
tion points. Not that for a sufficiently large set of evaluation points,
the correct exposure time is identified automatically in thesense that
the majority of dark frames that are used correspond to the correct
exposure time.

Figure 2: Error performance and relative contribution of selected dark frames (i.e., αi 6= 0) for a photograph of the test chart
(ISO 800 and16 seconds), and different sizes of the set of evaluation pointsS with dark frames with the same ISO settings
(ISO800) and temperature conditions but different exposure times.

that all photos were taken under the same temperature
conditions in the CMOS sensor.

• Variable temperature:Given an exposure time, a set
of 25 dark frames was taken, with an interval of ten
seconds in between. In ten seconds, the CMOS sensor
does not cool down, and the temperature in the sensor
thus ends up increasing with the chronological order.
Figure1 shows the increase of the intensity values of
the100 points with the highest variance between these
dark frames.

All the images were taken in a room whose temperature was
approximately constant.

Three problem instances are proposed to validate our
method. In the first and easiest one, we use dark frames
taken under the same temperature conditions and ISO set-
ting as the noisy image but different exposure times, in-
cluding dark frames with the same exposure time as the
noisy image. In the second instance, we make things a lit-
tle harder by having variable temperature conditions. For
the last case, we reuse the set of dark frames of the second
problem instance but we denoise an image with an expo-
sure time that does not match any of the exposure times
of the dark frames.4 All photos were taken with a Canon
EOS 1Ds using a full-frame CMOS sensor [6], and pro-
cessed with dcraw [3] and MATLAB (for our dark frame

4We also performed experiments where dark frame libraries included
photos taken at varying ISO settings, with qualitatively similar results to
what is shown below.

libraries, the optimization problems can be solved using the
standard Matlab optimizer in a fraction of a second).

For the first instance, figure2a shows the performance
in terms of normalizedE and figure2b shows the distribu-
tion of dark frames used by our method with respect to the
number of points inS. A photograph of the test chart with
ISO800 and16 seconds of exposure time was denoised us-
ing 3 dark frames of each exposure time with ISO800 and
the same temperature as the noisy photograph. Our method,
as expected, outperforms the single dark frame solution and
performs as well as the average of the dark matching tem-
perature, for sufficiently largeS, without giving informa-
tion about the exposure time. The optimalα is sparse, and
the majority of the matching dark frames are the ones cor-
responding to16 seconds of exposure time.

From these results, it seems that our method works well
but it does not outperform an average of dark frames with
the same exposure time, ISO setting and temperature as
the noisy image. However, requiring a set of dark frames
taken under the same temperature conditions (in the CMOS
sensor) and exposure time as the noisy image is inconve-
nient because it would necessitate a database of dark frames
for every possible temperature and exposure time. Fur-
thermore, controlling or measuring the temperature in the
CMOS sensor is not an easy task without additional hard-
ware.

For our second problem instance, where the temperature
is no longer constant, figure3ashows the error performance
and figure3b shows the weightsαi for |S| = 104 for our
scheme. In this case, a photograph of the test chart with
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Figure 3: Error and weight distribution, for a photograph ofthe test chart (ISO1000 and16 seconds), and different sizes of the
set of evaluation pointsS. Dark frames with the same ISO settings (ISO1000) but different exposure times and temperature
conditions were used.

ISO 1000 and16 seconds of exposure time was denoised
using25 dark frames of each exposure time with ISO1000
and variable temperature. Our method outperforms the sin-
gle dark frame solution and the average of the dark frames
with 16 seconds of exposure time and ISO1000 but vari-
able temperatures. As in the previous case, the optimalα

is sparse, and the majority of matching dark frames are the
ones with32 and16 second of exposure time.

Figure 4 shows the error performance for the last and
hardest case. This time, the photograph of the test chart was
taking with an exposure time of 21 seconds (ISO1000), an
exposure time which does not occur in our dark frame li-
brary. The photograph was denoised using25 dark frames
of each available exposure time, of variable temperature.
Although no matching dark frames were present in the li-
brary, our method continues outperforming the single dark
frame solution as well as the average of dark frames with21
seconds exposure time and ISO1000 but variable tempera-
tures.

As an application of our method, a set of astronomi-
cal raw photographs were denoised. The photographs were
recorded with ISO1600, exposure times from1 to 240 sec-
onds and different unknown temperatures. All the astro-
nomical photos were taken with a Canon EOS 5D contain-
ing a full-frame CMOS sensor [6].

A qualitative comparison with traditional methods
(wavelets [11], bilateral filtering [13] or anisotropic diffu-
sion [14]) is shown in figure5. We found that none of
the traditional methods removed the hot pixels (e.g., the red
spot in the inset), and the denoised images are too blurred
if we tune the parameters of the method in order to remove

significant noise. Note that knowledge of the dark frames,
as utilized by our method, makes it trivial to remove hot
pixels.

As the information used by our method is to some extent
complementary to that used by the other methods, a com-
bination is worthwhile. If we first apply first our method
and afterwards a denoising based on wavelets with the pa-
rameters tuned less aggressively (i.e., less blurring and less
noise removal, because our method already removed a sig-
nificant amount of noise), the result is satisfactory. Stillbet-
ter results could of course be obtained by additionally aver-
aging over multiple light frames, as is common practice in
astrophotography.

Figure6 shows another noisy image and its denoised ver-
sion using our algorithm and the wavelet denoising algo-
rithm provided by dcraw.

5. Conclusions

In this paper, we have shown how a relatively simple
method with low complexity can help denoise long expo-
sure images in raw format in which dark current noise is the
dominant source of noise.

Given a noisy raw image, we automatically compute a
synthetic master dark frame from a library of dark frames
recorded under different ISO settings, exposure times and
temperature conditions, avoiding the necessity of acquir-
ing dark frames every time a new photograph is taken. We
have shown that to some extent, our approach interpolates
across changes in exposure times and temperature — in
other words, it is sufficient to have a sparse library where
not all conceivable conditions are present.
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Figure 4: Error (denoised image gradients relative to noisy
image gradients) as a function of|S| for a photograph of
the test chart (ISO1000 and21 seconds), using dark frames
with the same ISO settings (ISO1000) but different expo-
sure times, not including21 seconds, and temperature con-
ditions. Our method outperforms the single matching (21
sec) dark frame, and it outperforms the mean of matching
dark frames starting with200 evaluation points.

Note that the software package Neat Image5 also uses
different noise profiles depending on the camera model, ISO
and exposure time (but not temperature conditions). How-
ever, like other noise reduction methods such as the ones
built into Adobe Camera Raw or Digital Photo Professional,
Neat Image is not camera specific in the sense that it does
not take into account information about the sensor pattern
noise (e.g., the location of hot pixels) in the specific ex-
emplar of the camera used to capture the pictures. This is
where our approach gets additional mileage, and it could
beneficially be combined with other noise reduction meth-
ods.

Under our experimental conditions, we have seen the fol-
lowing:

• Looking at the solution of the quadratic programming
problem that our method solves tells us which dark
frames are used for denoising a given image. In the
case of ISO setting (results not included) and exposure
time, those settings turn out to resemble those of the
photograph to be denoised.

• Provided the number of evaluation points is of the or-
der of 103 − 104, our approach does as well as the
ideal scenario where a sizeable set of dark frames taken
under exactly matching conditions are used. We have
moreover found that our method always beats the one

5http://www.neatimage.com/

of using a single dark frame, as implemented in com-
mercial cameras.

• Consumer cameras generally have no temperature con-
trol, in which case it is unrealistic to have dark frame
libraries of matching temperature. In this case, our ap-
proach actually managed to beat the method of aver-
aging dark frames taken with matching ISO and expo-
sure (but varying temperature), even if our library did
not contain dark frames of the correct exposure time.

• If we have a set of matching dark frames, and add some
additional dark frames whose exposure or temperature
do not match, our approach can still take advantage
of them and improve upon the solution obtained with
only the matching dark frames.

Implementation of the system on a given camera requires a
certain amount of logistical overhead:

1. A library of dark frames needs to be recorded. This
could be done either by the user, by the manufacturer,
or automatically whenever the camera is turned on and
not being used.

2. A small quadratic program needs to be solved for each
image to be denoised. In our experiments, with off-
the-shelf optimization code, this usually took a small
fraction of a second.

We believe that if these issues are addressed, the proposed
method can become a practical tool for digital photography,
especially for sensors with small pixel sizes as used in an
increasing number of today’s digital cameras.

Acknowledgment

Manuel Gomez Rodriguez is supported by a Fundacion
Caja Madrid Graduate Fellowship.

References

[1] A. Buades, B. Coll, and J. Morel. A Review of Image De-
noising Algorithms, with a New One.Multiscale Modeling
and Simulation, 4(2):490, 2005.2

[2] Canon’s full-frame CMOS sensor: the finest tools for digital
photography. Full frame CMOS, Canon White paper.1

[3] D. Coffin. dcraw.
http://www.cybercom.net/ ˜ dcoffin/dcraw/ .
4, 7

[4] H. P. Components Group. Noise Sources in CMOS Image
Sensors.Imaging Products Operations, 1998.1

[5] E. Dubois. Frequency-domain methods for demosaicking of
Bayer-sampled color images.IEEE Signal Processing Let-
ters, 12(12):847–850, 2005.2

[6] E. Fossum. CMOS image sensors: electronic camera-on-a-
chip. IEEE Transactions on Electron Devices, 44(10):1689–
1698, 1997.4, 5

http://www.cybercom.net/~dcoffin/dcraw/


(a) Noisy image with magnified inset

(b) Denoised using the proposed QP method (c) Denoised using the wavelet denoising scheme provided bydcraw with
threshold= 1000 [3]

(d) Denoised using bilateral filter (standard deviations(4, 0.2)
and half-window size = 5) [13], using matlab code of
http://mesh.brown.edu/dlanman/

(e) Denoised using QP and dcraw wavelet denoising scheme with threshold
= 600

Figure 5: Comparison between our denoising method and standard approaches for an image with ISO1600 and exposure
time60 seconds (horsehead nebula Barnard 33 in nebula IC 434, flame nebula NGC 2024, Canon EOS 5D with 300mm f/2.8
lens).



(a) Noisy image

(b) Denoised using QP and dcraw wavelet denoising, threshold = 600. Hot pixels and band
noise are significantly reduced.

Figure 6: Comparison between a noisy image and its denoised version with our algorithm and wavelet denoising. The image
was taken with ISO3200 and60 seconds of exposure time (summer milky way, Canon EOS 5D withZeiss Distagon 28mm
lens at f/2.8).

[7] ISO 12233.http://www.iso.org . 3

[8] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang. Noise
Estimation from a Single Image.IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 1,
2006.2

[9] H. Mittelmann. Benchmarks for Optimization Software.

http://www.iso.org


http://plato.asu.edu/bench.html . 2
[10] R. Molina, J. Nunez, F. J. Cortijo, and J. Mateos. Image

restoration in astronomy: a Bayesian perspective.IEEE Sig-
nal Processing Magazine, 18(2):11–29, 2001.2

[11] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli.
Image denoising using scale mixtures of Gaussians in the
wavelet domain. IEEE Transactions on Image Processing,
12(11):1338–1351, 2003.2, 5

[12] B. Schölkopf and A. Smola.Learning with kernels. MIT
Press, MA, 2002.2

[13] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images.Proceedings of the Sixth International Confer-
ence on Computer Vision, pages 839–846, 1998.2, 5, 7
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