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ABSTRACT
The online and offline worlds are converging. Location-
based services, ubiquitous mobile devices and on-the-go so-
cial network accessibility are blurring the distinction be-
tween in-person activities and their virtual counterpart. An
important effect of this convergence is the rapid and po-
werful impact of offline events (meetings, conferences) on
the evolution and temporal dynamics of the online connec-
tivity between members of social and professional networks.
However, these effects have been largely unexplored.

We study these effects by using data from LinkedIn, a
popular business-related social networking site. We find
that offline events may induce connectivity changes in the
online network – there is a dramatic increase in the num-
ber of connections between event attendees shortly after the
date of the event. Building on these insights, we describe
a non-supervised method that exploits connectivity changes
temporally correlated to real world events to successfully in-
fer more than 40% of specific event attendees. Finally, we
revisit the link prediction problem by including user con-
tributed information about offline events to achieve higher
link prediction performance.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications – Data mining
General Terms: Algorithms; Experimentation.
Keywords: Social networks, real world events, temporal
dynamics, link prediction.

1. INTRODUCTION
In recent years, there has been an increasing effort and sig-

nificant progress in understanding the global structure and
evolution of social networks [1, 3, 5]. However, the mech-
anism and motivation underlying individual edge creation
is still under-explored [2, 4]. In many circumstances, we
may be unable to understand the evolution and dynamics
underlying a social network by limiting our inputs to node
features, edge features and the topological structure of the
network.
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In the context of social and professional networks, exter-
nal factors such as social gatherings and professional confe-
rences trigger new connections between people (nodes) in
the network and are key to understanding its evolution.
Understanding these mechanisms and their motivation is
important - not only for its intrinsic value, but for its po-
tential to improve link prediction algorithms, detecting off-
line events (meetings, conferences, parties, etc.) that caused
the connection, or finding attendees with common interests
that facilitate both edge creation and the above-mentioned
events. In particular, external events allow us (i) to pre-
dict when the connection between two people will be created
(i.e., it is more likely to happen just before or after an event
in which both attend), and (ii) to predict connections be-
tween people that are distant in terms of network distance,
geography or both.

Present work. We study how real world professional events
and social gatherings relate to the temporal dynamics and
evolution of a professional network. We show that the num-
ber of new connections among attendees to events increases
significantly in a short time window just after the dates
of the events. Building on this empirical insight, we first
describe how to infer attendees to an event from changes
in the connectivity of a social network. Later on, we re-
visit the link prediction problem to account for real world
events, achieving a higher performance. We use data from
LinkedIn, an online professional network with more than
120 million members. In addition to the social graph, de-
fined by the professional connections among LinkedIn mem-
bers, we record a public list of attendees, often incomplete,
for the largest 10,000 real world public events that created
a page on events.linkedin.com. The lists are often in-
complete or partial since we only account for members that
publicly RSVP’ed to an event using events.linkedin.com.
This dataset gives us a comprehensive direct mapping be-
tween a subset of the attendees to events and members of a
social network.

2. EVENT DYNAMICS
Data. We use data from a popular business-related so-
cial networking site, LinkedIn, with more than 120 million
members that is mainly used for professional networking.
In addition to the professional connections among LinkedIn
members that define the social graph of the site, we record
the dates and lists, often incomplete, of LinkedIn members
that attended more than 10,000 real world events that have a
public webpage at events.linkedin.com. The lists are often
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Figure 1: Both the number of RSVPs per event
(Panel (a)) and the RSVPs per member (Panel (b))
are heavy-tailed distributions.

incomplete or partial because we only account for members
that RSVP’ed to an event using events.linkedin.com, but
the actual complete list of attendees is hidden and may be
larger.

First, we compute the distribution for the number of atten-
dees per event that RSVP’ed and for the number of events
that a member RSVP’ed1. Figure 1(a) shows the comple-
mentary cumulative distribution (Complementary CDF) for
the number of attendees per event that RSVP’ed. We ob-
serve a heavy-tailed distribution, as many other natural pro-
cesses – more than 90% of the real world events have more
than 10 RSVPs but only 15% of real world events have more
than 50 RSVPs. That means, 75% of the real world events
in events.linkedin.com have between 10 and 50 RSVPs.
Figure 1(b) shows the complementary CCDF for the num-
ber of events that a member RSVP’ed. Again, we observe a
heavy-tailed distribution, with 70% of the members repor-
ting attendance to a single real world event.

Connections, density and events. We record the dates
when events take place, the connections between attendees
of such events that RSVP’ed using LinkedIn and the day in
which those attendees become connected. Figure 2(a) shows
the absolute daily number of new connections. There are
several interesting patterns. First, we find a sharp increase
in the daily number of new connections during and up to
10 days after the events. Second, 10 days after the event,
the daily number of new connections declines and it is even
lower than before the event. This empirical insights are
also supported by the average daily density gain over the
subgraphs induced by real world events on the full social
graph, as shown in Figure 2(b). We define density of a
subgraph Ge as: D(Ge) = 2|Ee|/(|Ve| · (|Ve| − 1)), where Ve

and Ee are the set of nodes and connections in Ge.
We have observed an average higher connectivity rate and

density increase on and up to 10 days after the dates in which
events take place. However, does this density increase occur
consistently across the full spectrum of real world events
with a website in LinkedIn? As Figure 2(c) shows, it does
occur across events. This figure shows the density gain for
the subgraph induced by each event in the 5 days before the
event and the 5 days after the event. For each time window,
the events are sorted by decreasing density gain. We observe
that across the full range of events, there is a greater density
increase (gain) during the 5 days after the date of the event
than during the 5 days before. This supports the empirical

1We have considered only LinkedIn members that RSVP’ed
to an event on LinkedIn at least once.

findings that we discussed before.
Now, we break down events by attendees, and compute

the normalized degree gain per attendee for the 5 day time
window before the event and the 5 day time window after
the event. We define normalized degree of an attendee as
the number of connections of the attendee to other atten-
dees divided by the total number of attendees to the event
minus one. Figure 2(d) shows the normalized degree gain for
the attendees of all events. For each time window, the at-
tendees are sorted by decreasing normalized degree gain. In
this case, we observe that only half the attendees increases
significantly their normalized degree by connecting to other
attendees during the 5 days before the event, but there is an
increase in normalized degree across the full range of atten-
dees during the 5 days that follow each event.

3. INFERRING ATTENDEES
Algorithm. Given a undirected network G = (V,E) and a
real world event e, we define the set of nodes that attended a
real world event e as Ae ⊆ V , the set of nodes that RSVP’ed
to the event e as Se ⊆ Ae, and the set of nodes that attended
the event e but did not RSVP’ed as Ie ⊆ Ae. We assume
that nodes that RSVP’ed typically attend the event and
therefore Ie ∪ Se ≈ Ae and Ie ∩ Se = ∅. In many cases Ie is
unknown and our goal is to find the nodes that belong to Ie
given the seed set Se, for every real world event e. We now
describe a simple method to achieve this goal.

We build the set of inferred attendees Î by considering
all nodes in G that have n or more than n new connections
to nodes in Se in a time window, Î = {i ∈ V \Se : |j ∈
Se, −wmin ≤ (ti,j − te) ≤ wmax| ≥ n}, where ti,j is the
time in which nodes i and j become connected and te is
the (starting) date of the event e. We achieve a tradeoff
between recall and precision by tuning wmin, wmax and n.
For simplicity, in the remainder of the paper, we work with
symmetric time windows around the (starting) date of the
event; however, this does not restrict our ability to choose
different values for wmin and wmax.

Experimental evaluation. To evaluate the performance
of our method, we would like to study the tradeoff between
precision and recall in average across all 10,000 real world
events.

If a complete list of attendees (ground truth) for a real
world event is available, precision is the fraction of nodes
in the inferred set of attendees, Î, present in the complete
list of attendees of the event that did not RSVP’ed (i.e.,

|Ie ∩ Îe|/|Îe|) and recall is the fraction of nodes in the list
of attendees of the event that did not RSVP’ed, Ie, that are
present in the inferred set of attendees Îe (i.e., |Ie∩ Îe|/|Ie|).
Unfortunately, in general, we do not have access to a com-
plete list of attendees or ground truth for each real world
event but only to an incomplete list of people that RSVP’ed
through LinkedIn. However, in addition to estimate recall
using crossvalidation, we are able to identify and measure
a precision proxy. To estimate the recall for an event, we
perform leave-one-out crossvalidation (LOOCV) for every
member in the list of attendees that RSVP’ed, Se. In par-
ticular, we solve |Se| inference problems, one for each mem-
ber i ∈ Se. For each inference problem, we create the sets
S′
e = Se\i and I ′e = {i}, and infer I ′e from S′

e. We then
compute the recall for each of these inference problems and
estimate the total recall computing the average. We can-
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Figure 2: Daily connections and network density. There is a higher connectivity rate (and network density
increase) between attendees (that RSVP’ed) on and up to 10 days after the dates in which events take place.
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Figure 3: Recall and precision proxy (n = 2) for the
attendee prediction task.

not estimate the precision for an event given only a list of
attendees that RSVP’ed through LinkedIn, Se. Instead, we
compute a precision proxy as follows. For each event e, we
let our method include members i ∈ Se in the inferred set
Îe. We then compute the ratio between the list of attendees
that RSVP’ed, Se, and the size of the inferred set of atten-
dees, Îe, i.e., |Se|/|Îe| for each method (and event). This
ratio can be relatively low for events in which not many at-
tendees RSVP but the size of the event is actually high. In
some cases, a very small value may also indicate a lack of
precision.

Figure 3(a) shows the recall across events for different
time windows [te − w, te + w]. For w = 100, we achieve
an average recall as high as 40% across 10,000 real world
events and a recall higher than 40% for more than 50% of
the events. In Figure 3(b), we observe the ratio between
the list of attendees that RSVP’ed, Se, and the size of the
inferred set of attendees, Îe, that may include members i ∈
Se, across all 10,000 real world events. It is difficult to judge
the performance because the real number of attendees per
event is unknown, and we only have access to the list of
attendees that RSVP’ed using LinkedIn.

Example and case study2. Although true event attendee
lists are rarely made public, we have examined how our tech-
niques perform in one case where such information is known.
In spite of its small size, the event helps us exemplify our
techniques and grounds our precision proxy. The official
website of the event that we have chosen contains links to
the LinkedIn profiles of each attendee that has a LinkedIn
account and therefore, we have a reliable mapping between
both the list of attendees at LinkedIn and the complete list
of attendees at the official website.

2Drupal executives meeting in Brussels, 8-10 October, 2010.
Official event website: http://cxo.drupaldays.org.

All 21 people that RSVP’ed are also listed as attendees in
the official website of the event. However, there are a total
of 63 attendees with LinkedIn account listed in the official
website (out of 67 attendees), i.e., there are 42 LinkedIn
members that attended the event that did not RSVP’ed.
Figure 4(b) shows the daily connections to members that
RSVP’ed. As in section 2 for all events in average, we also
observe a peak in new connections just before and after the
event, and later on a decline in the number of new con-
nections. Figure 4(a) shows the number of connections to
members that RSVP’ed in a time window spanning 10 days
before and after the event for every member in the inferred
set of attendees returned by our method. More than 75%
of the inferred attendees created 5 or more connections to
members that RSVP’ed. Using our method for inferring at-
tendees with a time window spanning 20 days before and
after the event and a threshold of 2 connections, the recall
on the set of 42 members that did not RSVP is 71.4%. The
method returns only 2 LinkedIn members that are not listed
in the official website nor RSVP’ed, i.e., if we assume that
only people in the list of attendees in the official website
attended the event, the precision of our method is 95.5%.

4. INFERRING CONNECTIONS
Algorithms. Given a undirected network G = (V,E) and
a real world event e with (starting) date te, we define the
set of nodes that RSVP’ed to the event e through LinkedIn
as Se ⊆ V . Our aim is to predict new connections in dates
close to te in which at least one of the peers belongs to Se.

We first recall two baseline methods based on ranking
measures on the graph topology that have been shown to
achieve a relatively good performance in the link prediction
problem in social networks: normalized common neighbors
and Adamic-Adar. Normalized common neighbors (CN) be-
tween two nodes i and j is defined as the number of connec-
tions that nodes i and j have in common normalized by the
product of the connections of each node. Adamic-Adar (AA)
modifies common neighbors by weighting each neighbor by
her degree instead of simply counting.

The rationale for an event-based link prediction approach
relies on the observation that an attendee to an event tends
to create almost one order of magnitude more connections
to attendees of the same event in dates closer to the event
than in other days far from the date of the event. We then
introduce two simple methods based on normalized common
neighbors and Adamic-Adar that given a list of RSVP’s to
a real-world event achieve a greater performance on the link
prediction task for dates close to the date of the event. Nor-
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Figure 4: Case study: Drupal executives meeting
event.

malized common attendees (CAe) between two nodes i and
j given an event e is defined as the number of connections to
attendees of the event e that nodes i and j have in common
normalized by the product of the connections of each node
that are attendees to the event. In this case, we assume that
two nodes are more likely to get to know each other and be-
come connected in the social network if they have common
connections that attended an event e. Finally, event-based
Adamic-Adar (AAe) simply modifies common attendees in
the same way that Adamic-Adar modifies common neigh-
bors, penalizing nodes with high degree.

Experimental evaluation. We evaluate our baseline and
event-based methods as follows. For each attendee to an
event, we consider (i) her second degree connections up to
wmin days before the day of the event and (ii) the other
attendees to the event to build the list Pe of potential con-
nections that may be created by attendees to an event e
during the time window (te − wmin, te + wmax). Then, we
generate for each method a list of top-k most likely connec-
tions per event L̂e,k ⊆ Pe. Sweeping over k values allows us
to obtain different points in the precision recall curve.

For each event, we compute the precision and recall of
the baseline and event-based methods on the connections
Le that the attendees create during the time window (te −
wmin, te + wmax). For our experiments we set wmin =
wmax = 10 days, i.e., we try to find the connections cre-
ated in a 20-day time window centered on the (starting)
date of each event. First, we filter out events with less
than 10 attendees, since we have observed that attendees to
such small events are typically heavily connected between
them and events do not provide additional information, and
events with more than 50 attendees for computational rea-
sons, since they were only 15% of the total number of events.
Then, we generate two sets of events: a set of 500 events
with the smallest number of connections between attendees
up to te − wmin and a set of 100 random events. For each
event, the set of potential connections that we rank are (i)
connections between each attendee and her second degree
connections up to te −wmin days before the (starting) date
of the event and (ii) connections between attendees.

Figure 5 shows the average precision vs recall curves across
events with 1.96· standard error (σ/

√
N) bands, which result

of sweeping over k on the lists of top-k most likely connec-
tions in the event-based and baseline methods for both set of
events. In both event sets, AAe outperforms both baselines
in terms of precision for more than an order of magnitude for
recall values up to 50%. For example, for a 10% recall, AAe

achieves a precision of approximately 4% in the 500-event set

(a) 500-event set (b) 100-event random set

Figure 5: Precision vs recall for the link prediction
task.

and 1.5% in the 100-event set while CAe precision is 0.5% in
the 500-event set and 0.25% in the 100-event set. The preci-
sion for both CN and AA goes down to a value below 0.2%
in the 500-event set and below 0.06% in the 100-event set.
Due to the heavily unbalance dataset that the algorithms
need to deal with, they output solutions with relatively low
precision value. If we compare the performance between
both sets of real world events, we observe that event-based
methods gives a greater additional mileage in the 500-event
set with the smallest number of connections between atten-
dees up to te − wmin than in the 100-event random set. A
possible explanation behind this difference in performance is
that a small number of connections among attendees wmin

days before an event makes inferring connections using only
the network topology more difficult.

5. CONCLUSIONS
We have given empirical evidence that real world events

shape the temporal dynamics of a social network. Real-
world events may facilitate connections between attendees
in an on-line social network. We conclude this after study-
ing a business-related social network, LinkedIn, with more
than 115 million members and 10,000 real-world events. We
exploit the bridge between off-line and on-line dynamics in
two research problems: attendee inference and link predic-
tion. First, we show that a simple method that account
for event-induced connectivity changes in a social network
can be fruitfully applied to uncover attendees to real-world
events. We are able to successfully infer more than 40% of
specific event attendees using only event-induced connectivi-
ty changes. Second, we modify well-known non supervised
link prediction methods to account for the event-induced
network dynamics and we show that these modifications lead
to a significant improvement.
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