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Abstract—Brain-Computer Interfaces (BCIs) in combination
with robot-assisted physical therapy may become a valuable
tool for neurorehabilitation of patients with severe hemiparetic
syndromes due to cerebrovascular brain damage (stroke) and
other neurological conditions. A key aspect of this approach
is reestablishing the disrupted sensorimotor feedback loop, i.e.,
determining the intended movement using a BCI and helping
a human with impaired motor function to move the arm using
a robot. It has not been studied yet, however, how artificially
closing the sensorimotor feedback loop affects the BCI decoding
performance. In this article, we investigate this issue in six healthy
subjects, and present evidence that haptic feedback facilitates the
decoding of arm movement intention. The results provide evi-
dence of the feasibility of future rehabilitative efforts combining
robot-assisted physical therapy with BCIs. Moreover, the results
suggest that shared-control strategies in Brain-Machine Interfaces
(BMIs) may benefit from haptic feedback.

Index Terms—Haptic Feedback, Brain-Machine Interfaces,
Motor Imagery, EEG.

I. INTRODUCTION

In the past two decades, research on Brain-Computer Inter-

faces (BCIs) has evolved from basic feasibility studies [1; 2; 3]

to a state in which basic communication can be routinely

performed after only brief calibration periods with healthy

subjects [4; 5] as well as with subjects in early stages of

amyotrophic lateral sclerosis (ALS) [6]. Although communi-

cation with completely locked-in subjects in late stages of

ALS still remains a challenge, this substantial progress has

resulted in a growing interest in extending the application

domain of BCIs from communication towards restoration of

basic motor functions. For example, EEG-based control of an

electric wheelchair has been reported in [7], and the feasibility

of controlling a mobile robot by means of a non-invasive BCI

has been demonstrated in [8].

Interestingly though, most studies in this field only consider

replacing dysfunctional body parts by BCI-controlled artificial

actuators. Instead, BCIs might may also be applicable to

directly facilitate rehabilitation of body parts impaired by

neurological conditions such as stroke [9]. While traditional or

robot-assisted physical therapy constitutes the key ingredient

to rehabilitation after stroke [10; 11], motor imagery has also

been shown to have a beneficial effect in stroke rehabilita-

tion [12; 13]. Furthermore, successful MEG-based decoding

of motor imagery in chronic stroke has been demonstrated

in [14]. The next logical step is to combine these insights into

an integrated stroke therapy, in which patients exert control

over robot-assisted physical therapy through the decoding of

movement intentions using a BCI. Such an integrated therapy

can be expected to have a large impact on stroke rehabilitation,

as the synchronization of robot-assisted physical therapy with

movement intention is likely to result in increased cortical

plasticity due to Hebbian-type learning rules [15; 16; 17].

A key aspect of this approach is reestablishing the disrupted

sensorimotor feedback loop, i.e., temporarily bypassing the

impaired movement execution of stroke patients through robot-

assisted physical therapy controlled by means of a BCI. Impor-

tantly though, the effect of artificially closing the sensorimotor

feedback loop on BCI-decoding has not yet been studied. It is

well known that passive movements [18; 19] as well as active

arm movements [20] induce patterns in the electromagnetic

field of the brain similar to those observed during motor

imagery [3]. Moreover, random haptic stimulation has been

shown to be beneficial for decoding motor imagery [21].

However, it remains an open question how the electromagnetic

field of the brain changes in response to artificially closing

the sensorimotor feedback loop, i.e., by providing sensory

feedback on the intended movement without actual movement

execution, and whether the resulting feedback processes are

beneficial or disadvantageous for decoding movement inten-

tions.

In this work, we study the effect of artificially closing

the sensorimotor feedback loop on BCI decoding of arm

movement intention in six healthy subjects. Specifically, each

subject performed motor imagery of arm extension and flexion

while being attached to a robot arm. Simultaneously, we

performed on-line decoding of movement intention with an

EEG-based BCI, and employed the robot arm to move the

subject’s arm according to the inferred movement intention. By

using a block-wise design, we compared subject performance

with and without robot-induced movement execution, and

provide evidence that artificially closing the sensorimotor loop

increases decoding accuracy substantially. Thereby, our results

demonstrate that closing the sensorimotor feedback loop is not

only feasible, but even facilitates decoding of movement inten-

tion. While it remains to be established whether these results

can be transferred from healthy subjects to stroke patients, our

results provide support for the feasibility of a future integrated

stroke therapy, combining robot-assisted physical therapy with



decoding of movement intention by means of a BCI. Moreover,

including haptic feedback may improve performance in shared-

control strategies in Brain-Machine Interfaces (BMIs).

The paper is organized as follows. Section II is devoted to

a description of our experimental design, including the neces-

sary equipment and methods from signal processing, on-line

decoding and robot arm control. In Section III, experimental

results for six healthy subjects are studied. The paper finishes

with some discussion and conclusions of our experiments in

Section IV.

II. MATERIALS AND METHODS

A. Human subjects

Six right-handed subjects, four females and two males with

ages between 22 and 32 years old, were taking part in this

study. None of the subjects had previous experience with motor

imagery. All subjects participated in all the conditions of haptic

feedback explained in Section II-D. They all gave informed

consent prior to the EEG session.

B. Recording

An EEG electrode cap (by Electro-Cap International, Inc.)

in combination with a Quickamp (by Brain Products, GmbH)

amplifier were used during our experiments. 35 channels of

the EEG electrode cap were fed into the amplifier, with a

250Hz sampling rate and a built-in common average reference

(CAR) montage. All electrode impedances were kept below 10

kΩ. The electrode array covered parts of the premotor cortex,

primary motor cortex and somatosensory cortex as well as

several other areas, as shown in Figure 3. EEG signals were ac-

quired from the amplifiers using the general-purpose BCI2000

software [22], and the additional module BCPy2000 [23] was

used for on-line signal processing, statistical learning, and

transmission of the control signal.

C. Tasks

Fig. 1. Subject’s imagery
task.

The subject’s task consisted of

motor imagery of the right fore-

arm. The subject was instructed to

imagine moving the right forearm

forward or backward, using the el-

bow as the single degree of free-

dom during the imagined move-

ment, see Figure 1. The forward

and backward movements are parts

of a pointing movement with the

forearm and it is an essential com-

ponent of a grasping movement. In

each block, there were 15 visual

and auditory cues (”Move forward”,

”Move backward”) for each move-

ment direction and 30 visual and

auditory cues (”Relax”) for rest, delivered as a text at a

distance of 1.5m from the subject, alternating between 5s

movement periods and 3s rest periods. A trial is defined

as a rest period followed by a movement period. In each

block, on-line visual feedback was provided after an initial

training period consisting of 25 seconds for each condition.

Two blocks per condition and user were performed. Here,

an arrow moved forward, backward or stopped every 300 ms

based on the on-line decoding of the EEG signal. The subject’s

right forearm was attached to a robot arm, which provides

haptic feedback as explained in Section II-D. Cues of both

types of movement directions were interleaved randomly in a

way that the movement direction could not be inferred a priori.

D. Haptic Feedback and Robot Arm

Fig. 2. Robot arm setup.

A Barret WAM robot arm was

used to provide haptic feedback

during our experiments. A robot

arm was attached to the subject’s

forearm (see Figure 2). The robot

was configured in a safe low

power mode. It was programmed

to only move the joint that mimics

the elbow. Hence, we deal with a

system with one degree of free-

dom (DoF). Note that we aim at

showing how haptic feedback in-

fluence the on-line decoding. A

single DoF movement sufficed for

this purpose and, hence, it was

chosen for simplicity. In order to

explore the influence of haptic

feedback, we performed four different conditions or exper-

iments (I-IV). During the training periods for Conditions I

and II, the robot arm moves the subject’s forearm forward or

backward in a coherent manner with respect to the text cues. In

the test periods for Conditions I and III, the robot arm moves

forward, backward or stops based on the classifier output.

During the training periods for Conditions III and IV, and test

periods for Conditions II and IV, the robot does not move

(See Table I). Conditions for each subject were interleaved

randomly to have a fair comparison among conditions, avoid-

ing effects caused by training, fatigue or changes in attention

over the course of an experiment.

E. Signal Analysis

Initially, a centre-surround spatial sharpening filter or sur-

face Laplacian [24], band pass filtering (2-115 Hz), and

notch filtering (50 Hz power line) were applied on the raw

signals. Normalized average power spectral densities in 2

Hz frequency bins for each electrode were used as on-line

features, as previously used in motor imagery and for real

movement decoding [25; 26]. Burg’s and Welch’s methods

were used to compute an estimation of the power spectral

density (PSD). During the experiment, the estimation was

computed on-line using Welch’s method over incrementally

overlapping bigger time segments during each 5s movement

or 3s resting periods. Larger segments provided less noise and

more reliable estimates while smaller time segments were nec-

essary to enable on-line classification already at the beginning



Fig. 3. EEG electrode grid configuration used in our experiments. Recorded
electrodes are shown in green.

of every trial. In further off-line analysis using MATLAB (by

The MathWorks, Inc.), Burg’s maximum entropy estimation

was used to estimate the PSD over incrementally overlapping

bigger time segments during each 5s movement or 3s resting

periods, given its greater performance over the dataset.

F. On-line decoding

On-line classification was carried out to discriminate move-

ment and resting, providing on-line visual feedback and haptic

feedback, as explained in Section II-D. For each run, a linear

support vector machine (SVM) classifier [27] was generated

on-line after a short initial training period in which spectral

estimates for 25 seconds of each condition (both movement di-

rections and rest) are computed. Given the number of recorded

channels (35) and frequency bins (20), we have a vector of 700

features per data point. In addition, the parameters of a sigmoid

function are estimated by crossvalidation over the training set

in order to map the SVM outputs into probabilities [28]. To

be able to analyze the classifiers outputs in rest and movement

periods together, we redefine the probabilistic output to mean

always probability of success, i.e. probability of rest for periods

of rest and probability of movement for period of movement.

Such probabilities will help us to study the differences among

different schemes of haptic feedback in Section III. We decided

to use a linear kernel in the SVM in order to limit the

number of hyper-parameters. Off-line analysis indicated that

the use of non-linear kernels did not improve the classification

performance significatively.

Condition Training Test (Visual feedback is always given)

I Robot moves Robot moves (following classifier)
II Robot moves Robot does not move
III Robot does not move Robot moves (following classifier)
IV Robot does not move Robot does not move

TABLE I
CONDITIONS TO EXPLORE HAPTIC FEEDBACK.

III. RESULTS

A. Performance

In our experiments, we generated a linear support vector

machine (SVM) classifier [27] on-line after a short initial train-

ing period in which spectral estimates for 25 seconds of each

condition (both movement directions and rest) are computed.

Moreover, we estimate the parameters of a sigmoid function to

map the SVM outputs into probabilities. Two binary classifiers

are generated: one that distinguishes between moving forward

vs resting and another one that classifies between backwards vs

rest, but we provide results not making a distinction between

moving backward and forward, i.e. movement vs rest is shown.

First, we study the probabilitic outputs in the on-line classi-

fication in order to see wether there is a significant difference

among conditions of brain-signal based haptic reinforcement

(see Table I for a definition of the conditions). Afterwards,

we show the present average accuracy and the area under the

receiver operating characteristic (AUC) [29] of all classifiers

for every condition as well as every subject to illustrate our

initial findings.

We perform a two-way analysis of variance (ANOVA)

with a Bonferroni adjustment to compensate for multiple

comparisons [30] over the probabilistic outputs of all trials

(sessions) and subjects. This step lets us discover if there are

differences in the classification accuracy among all four con-

ditions of haptic feedback. Figure 4(a) shows the confidence

intervals and the average probabilistic output per condition

of haptic feedback. ANOVA rejected the null-hypothesis that

the classifier decision values means are equal for all pair of

conditions except Condition II vs Condition III at significance

level α = 0.05. The results suggest that a better classification

performance when comparing arm movement intention vs rest

if the robot provides robot-based haptic reinforcement during

the training and the test periods, i.e. condition I outperforms

the rest. Note that during test, the robot arm is programmed

to move or stop according to the output of the classifier in

an on-line manner. Moreover, the classification performance is

substantially higher when the robot was guiding the subject

during the classifiers’ training than if only the visual stimulus

was supplied, i.e., condition II outperforms condition IV. This

last finding may be caused by an improved representation of

the arm movement intention of the subject due to the robot-

induced passive movement.

Both average accuracy and area under the ROC curve for

every condition of haptic feedback as well as every subject are

shown in Figure 4(c). Please note that the differences among

conditions are consistent with the findings discussed during

the analysis of variance. In Condition I, the classification

performance appears to be the highest but Condition II also

exhibits a higher performance than Condition IV. AUC is

independent of the threshold applied to the probabilistic output

of the classifiers, and thus might be a fairer comparison

between the conditions than the average accuracy.

These observations provides empirical evidence of a greater

spectral power decrease (or event-related desynchronization)



when comparing movement intention vs rest in cases in which

the robot arm guides the subject’s arm. Classification of real

(overt) active arm movements vs rest has been shown to

achieve performance superior to classification of imagined

arm movements vs rest [31]. Our results indicates that this

statement can be extended to the case of classification of real

passive arm movements guided by a robot arm vs rest.

B. Spatial and Spectral Features

Figure 5(a) shows a comparison of the classifier weights

per electrode averaged over the (8, 40) Hz frequency band

and across the subjects between training periods in which the

robot arm guided the subject’s arm and training periods in

which it did not. We focus on this frequency range because it

contains the µ (9-13 Hz) and β (18-24 Hz) rhythms, reported as

highly discriminative in motor imagery experiments [32]. We

can see how more electrodes over the motor area representing

the right arm, i.e., C3, CP3, FC3, FC1, . . . , get larger weights

(i.e., have a higher discriminative power) when the robot arm

guides the subject’s arm during the training period. The spatial

distribution of the weights in the classifiers indicates that

the classifiers employ neural activity, as the weights in the

peripheral locations are low. Hence, electromyographic (EMG)

activity is not likely to play a major role.

The average weights per frequency bins of 2 Hz for

the most discriminative electrodes, C3 and CP3, are shown

in Figure 5(b). A shift towards higher frequencies can be

observed, i.e., from µ rythm desynchronization to β rythm

desynchronization. At the same time, a narrower frequency

band accumulates most of the weights when the robot arm

guides the subject’s arm during the training period.

IV. DISCUSSION

In this article, we have demonstrated that artificially clos-

ing the sensorimotor feedback loop facilitates decoding of

movement intention in healthy subjects. This result indi-

cates the feasibility of a future integrated stroke therapy that

combines robot-assisted physical therapy with decoding of

movement intention by means of a BCI. Specifically, we

provided evidence that the strength of the sensorimotor rhythm

(SMR), as measured by the class probability estimates of

the SVM, is modulated by the haptic robot-based feedback.

Furthermore, our results suggest that this modulation of the

SMR is actually beneficial for decoding of arm movement

intention. An increased classification accuracy is exhibited

by comparing performance with haptic feedback to no haptic

feedback (cf. Conditions I and IV in Figure 4).

The spatial and spectral structure of the classifier weights

in Figures 5 indicate that haptic feedback activates the so-

matosensory cortex and increases ERD/ERS modulation in

the β-frequency range. Interestingly, this observation is in

agreement with previous reports on the effect of passive haptic

stimulation [18; 19; 21], even though in these studies haptic

stimulation was performed independently of the actual (or

decoded) movement intention.

Besides the most prominent difference between decoding

performance with no haptic feedback (Condition IV) and

haptic feedback during training and testing (Condition I), it

is noteworthy that our results also suggest an effect on the

decoding performance when haptic feedback is provided only

during training. Haptic feedback during the training session

increased performance during testing relative to the condition

with no haptic feedback during training, even though the haptic

feedback was not applied during the test session (cf. conditions

II and IV in Figure 4). Potential explanations for this obser-

vation include a positive after-effect of passive arm movement

during training on a subject’s capability to perform motor

imagery during the test session, as well as the possibility that

providing haptic feedback during training provides features

that enable learning a classification procedure with a better

generalization error than without haptic feedback.

Regarding the positive effect of closing the sensorimotor

loop on the decoding of movement intention, we speculate

that haptic feedback supports subjects in initiating a voluntary

modulation of their SMR. However, further investigations into

the neuronal correlates of this effect are required.

It should be pointed out, however, that the support provided

by this study for a future stroke rehabilitation, combining

robot-assisted physical therapy with BCI-based decoding of

movement intention, hinges on the assumption that the results

presented here with healthy subjects can be transfered to

stroke patients. While this issue has to be addressed in future

studies, there is no a-priori reason why the beneficial effect

reported here should require an intact motor execution system

- particularly as the design of this study deliberately avoided

active movement execution.

Besides the relevance of our results for a potential stroke

therapy, it is furthermore noteworthy that the positive influence

of haptic feedback on decoding accuracy might also prove

to be beneficial for other scenarios and subject groups. For

example, subjects in late stages of ALS appear not to be

capable of sufficiently modulating their SMR, as indicated by

fact that so far no communication with a completely locked-

in subject has been established by means of a BCI. While

the extent of sensory feedback in late stages of ALS remains

unclear, haptic feedback might also support these subjects in

initiating volitional modulation of their SMR. In a shared-

control scenario in BMIs, we may improve performance by

means of haptic feedback.
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